Полная скорость испарения для веществ из газообразных продуктов

В случае вещества, пары которого состоят из нескольких газообразных продуктов, как это имеет место у графита, полная скорость испарения определяется как сумма скоростей испарения отдельных компонент, рассчитанных по кинетическому уравнению Кнудсена — Ленгмюра. При этом необходимо знать коэффициенты аккомодации (испарения) для каждой из компонент. Расхождения между данными различных авторов весьма значительны, ниже мы проанализируем влияние этих коэффициентов на скорость сублимации. Режимам диффузионного окисления и сублимации предшествуют переходные режимы разрушения, где происходит смена одного механизма другим. Кроме того, есть и другие отличия от изложенной выше идеальной схемы разрушения. В частности, химическое взаимодействие может сопровождаться механическим отрывом частиц (эрозией) под действием сдвигающих напряжений газового потока. При разрушении многих металлов на поверхности образуются промежуточные фазы — окислы в расплавленном состоянии, которые, растекаясь по поверхности, частично экранируют ее от окислительного воздействия внешнего потока. Достаточно сложной оказывается и модель химического взаимодействия с газовыми потоками карбидов, нитридов и боридов различных элементов. Тем не менее основные черты этого взаимодействия у большинства материалов достаточно схожи между собой. Дальнейший анализ химического взаимодействия мы проведем на примере графита. Несмотря на то что он известен очень давно, его широкое промышленное применение в качестве теплозащитного и огнеупорного материала началось лишь в последние годы.

Известны две кристаллические модификации углерода — алмаз и графит, и предполагается существование аморфного углерода, примерами которого считают сажу, древесный и животный уголь. Физические свойства алмаза и графита сильно различаются, что связано с большим различием их кристаллических решеток. Так, алмаз почти в 1,5 раза плотнее, его теплопроводность в 30 раз выше, а теплоемкость в 1,5 раза меньше. Физические свойства аморфного углерода интересны тем, что его теплопроводность в 30 раз меньше, чем у графита, а температура воспламенения в кислороде лишь чуть превышает 600 К, тогда как графит остается инертным до 800 К. Графитизация алмаза и аморфного углерода на воздухе начинается при температурах выше 1300 К. Тройная точка графит — жидкость — пар приходится на давление 1,1 • 107 Па и температуру 4200 К.

Выпускаемый промышленностью графит — это разнообразные по структуре кристаллические частицы, скрепленные связующим. Технический графит получают прессованием и сильным нагревом твердых угле-родов типа нефтяного кокса, смешанного с каменноугольным пеком или какими-либо другими высокоуглеродными связующими (фенолформальдегидными смолами и др.). Графитизация проводится в электрических печах при температурах от 2800 до 3300 К. Исследования дифракции рентгеновских лучей показывают, что почти все происходящие на этой стадии изменения являются результатом повышения степени упорядоченности кристаллитов, присутствующих в обожженном состоянии, и что увеличения их размеров практически не происходит. В процессе графитизации обожженного изделия из нефтяного кокса удельное сопротивление материала уменьшается в 5 раз, теплопроводность повышается в 25 раз, коэффициент термического расширения уменьшается на 50%.

Дополнительная информация: индивидуальность, эксклюзивность, изысканность и уникальность — вот что ценится в современном интерьере помещения. Каждый стремиться придать своей квартире неповторимый вид, чтобы разнообразить свою жизнь и удивить гостей. Художественная роспись стен и потолков гарантирует неповторимость каждого элемента и создание уникальной атмосферы в помещении.

2 сентября 2012